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Stability of solutions to a reaction diffusion system
based upon chemical reaction kinetics
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In this paper, we deal with the stability problem to some mathematical models that
describe chemical reaction kinetics. One is a set of ordinary differential equations indu-
ced by one reversible chemical reaction mechanism containing three chemical species.
The other is a set of reaction diffusion equations based on the same chemical reac-
tion. We show that all solutions of the model are asymptotically stable by applying the
Liapunov method. We thus find that the concentration of each species has certain limits
as time proceeds.
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1. Introduction

The mathematical model of chemical reaction kinetics is used in various
fields, such as in physical chemistry, biochemistry, and atmospheric or aquatic
chemistry. However, the stability of such mathematical models is not well stu-
died. We here are concerned with their global stability of two certain models,
which is described later, that is, their global behavior of solutions for our models
as time proceeds. We briefly introduce some notions of the reaction kinetics
below.

Suppose we have a complex chemical reaction containing N chemical spe-
cies X1, X1, . . . , X N . Assume that M reaction steps are taking place as follows:

N∑

i=1

α(i, j)Xi
k j−→

N∑

i=1

β(i, j)Xi , j = 1, . . . , M. (1)

Here the positive values of k j are the reaction rate constants, and the non-
negative integers α(i, j), and β(i, j) are the stoichiometric coefficients.

1134

0259-9791/08/0003-1134/0 © 2007 Springer Science+Business Media, LLC



J. Lim / Chemical reaction Kinetics 1135

The order of the jth reaction step in (1) is defined to be
∑N

i=1 α(i, j) and
the order k of the reaction is obtained if max

∑N
i=1 α(i, j) ≤ k holds [7]. The jth

reaction step is said to be reversible if the reverse reaction also occurs among
the reaction steps; otherwise it is irreversible. The reaction (1) is said to be mass
conserving if there exist positive real numbers θi (i = 1, . . . , N ) for which

N∑

i=1

α(i, j)θi =
N∑

i=1

β(i, j)θi , j = 1, . . . , M.

Let us define the concentrations of species xi ≡ [Xi ] as dependent variables
and time as an independent variable. The mass action type model of the reaction
(1) is formulated as

dxi

dt
=

M∑

j=1

(β(i, j) − α(i, j))k j

N∏

p=1

xα(p, j)
p , i = 1, . . . , N .

This induced kinetic differential equation of reaction is deterministic.
Now, we establish a mathematical model which explains kinetics mechanism

obtained by a chemical reaction. The second-order reversible chemical reaction
involving three species, X1, X2, X3, with the forward rate constant k1 and back-
ward rate constant k2 is as follows.

X1 + X2

k1�
k2

X3.

The model is a system of the ordinary differential equations

du1

dt
= −k1u1u2 + k2u3,

du2

dt
= −k1u1u2 + k2u3, (2)

du3

dt
= k1u1u2 − k2u3

with ui ≡ [Xi ]. The initial conditions are given by u1(0) = u1,0, u2(0) = u2,0,
and u3(0) = u3,0.

Letting C1 = u1,0+u3,0, C2 = u2,0+u3,0, we thus obtain that the solution of
(2) is asymptotically stable, applying the Liapunov stability theorem [3] (p. 293).

We present the results:

Theorem 1.1. Assume that u1, u2, and u3 are the solutions of the initial value
problem (2). Let

C1 = u1,0 + u3,0 and C2 = u2,0 + u3,0. (3)
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Then u1(x, t), u2(x, t), and u3(x, t) converge uniformly to C1 − u3,∞, C2 −
u3,∞, and u3,∞, respectively, as t → ∞.

That is,

lim
t→∞ u1(t) = C1 − u3,∞,

lim
t→∞ u2(t) = C2 − u3,∞, (4)

lim
t→∞ u3(t) = u3,∞,

where

u3,∞ = C1 + C2 + K

2
−

√
(C1 − C2)

2 + K 2 + 2K (C1 + C2)

2
(5)

with K = k2/k1.

Further, we investigate the stability of the previous model including the dif-
fusion phenomena, which it turns out a system of parabolic partial differential
equations. Define a domain Ω = U × [0, ∞), where U = {x | 0 < x < l}. This
model is represented by the parabolic partial differential equations

⎧
⎨

⎩

∂t u1 = ∂xx u1 − k1u1u2 + k2u3,

∂t u2 = ∂xx u2 − k1u1u2 + k2u3,

∂t u3 = ∂xx u3 + k1u1u2 − k2u3

(6)

in Ω. Here, the diffusion is assumed to be equally diffusive; the diffusion does
not depend on the individual chemical species.

The initial conditions assume the form

ui (x, 0) = gi (x) in Ω, (7)

where all gi (x) (i = 1, 2, 3) are bounded and belong to L1(Ω).
We consider this initial value problems (6) and (7) under three different

cases, such as, periodic condition, Neumann boundary condition and an infinite
domain in space. More precisely, they are expressed as in the followings: the per-
iodic condition

ui (x + 2l, t) = ui (x, t) on Ω. (8)

Neumann boundary conditions

∂ui

∂x
= 0 on Ω (9)

and the infinite domain U , that is,

Ω ≡ R × [0, ∞). (10)

Based on the previous result for ordinary differential equation, we prove the
stability of the solutions of a set of partial differential equations. The Liapunov
stability theorem is also applied. We now state:
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Theorem 1.2. Assume that u1, u2, and u3 are solutions of the initial/boundary
value problem for diffusion equations (6)–(8) (or (6), (7), (9) or (6), (7), (10)).
Let

C1 = 1
U

∫

U
(g1(x) + g3(x))dx, (11)

C2 = 1
U

∫

U
(g2(x) + g3(x))dx (12)

in Ω. Let u3,∞ be defined previously in (5).
Then u1(x, t), u2(x, t), and u3(x, t) converge uniformly to C1 − u3,∞, C2 −

u3,∞, and u3,∞, respectively, as t → ∞.

In the next section, we first prove the stability of the solutions of ordinary dif-
ferential equations and then prove it for partial differential equations.

2. Stability analysis of the model

Proof of Theorem 1 To prove this, it is enough to show that the solution u3(t) =
u3,∞ is asymptotically stable as t → ∞.

Define a positive definite function V : E → R, E open in R,

V (u3(t)) = (u3 − u3,∞)2. (13)

Then V (u) is a Liapunov function on E . Letting w3 = u3,∞ − u3,

dV

dt
= 2(u3 − u3,∞)(k1u1u2 − k2u3)

= −2w3 [ k1(C1 − u3)(C2 − u3) − k2u3]
= −2w2

3 [ k1(C1 + C2 − u3,∞ − u3) + k2 ]
< 0.

Applying the Liapunov stability theorem [3], the solution u3(t) converges
uniformly to u3,∞ as t → ∞.

Furthermore, the solution u1(t) converges uniformly to C1−u3,∞ as t → ∞.
Similarly, the solution u2(t) converges uniformly to C2 − u3,∞ as t → ∞. These
complete our assertion. ��

Remark . We remark that u3,∞ defined above is an equilibrium point of the equa-
tion du3

dt = k1u1u2−k2u3. Indeed, one can easily see that (5) is a root of the (RHS
= 0) equation k1(C1 − u3)(C2 − u3) − k2u3 = 0, or u2

3 − [(C1 + C2) + k2/k1]u3 +
C1C2 = 0 by (3).



1138 J. Lim / Chemical reaction Kinetics

Proof of Theorem 2 We first prove that u3(x, t) converges to u3,∞ as t goes to
infinity.

Let w1 = u1 + u3. Then we have the initial value problem
{

∂w1
∂t = ∂2w1

∂x2 in Ω = U × (0, ∞),

w1(x, 0) = g1(x) + g3(x) ≡ g̃1(x) in U.
(14)

We claim that the solution w1(x, t) converges to C1 as t → ∞. Here C1 is
determined later.

Case:

(a) Assume that w1(x + 2l, t) = w1(x, t) in Ω̄.

By the method of separation of variables, we obtain the solution

w1(x, t) =
∞∑

n=1

e−(nπ)2t/ l2
[
an cos

(nπx

l

)
+ bn sin

(nπx

l

)]
,

where an=2
l

∫ l
0 g̃1(x) cos(nπx

l ) dx , bn=2
l

∫ l
0 g̃1(x) sin(nπx

l ) dx (n=1, 2, . . .).
Thus, w1(x, t) → 0 as t → ∞.

(b) Assume that ∂w1
∂n = 0 on Ω.

By the method of separation of variables, it can be shown that the
eigenvalues and the eigenfunctions are λ0=0, ϕ0=1, and λn=n2π2

l2 , ϕn =
cos(nπx

l ), n = 1, 2, . . . , respectively. Thus, the solution is

w1(x, t) = 1
2

a0 +
∞∑

n=1

an e−(nπ)2t/ l2
cos

(nπx

l

)
,

where an = 2
l

∫ l
0 g̃1(x) cos(nπx

l ) dx, (n = 0, 1, 2, . . .).
Consequently, w1(x, t) → a0

2 as t → ∞.

(c) Consider Ω ≡ R × [0, ∞).
The solution w1(x, t) is given by

w1(x, t) = 1
(4π t)n/2

∫ ∞

−∞
e−|x−y|2

4t g̃1(y) dy.

Clearly, we see that e−|x−y|2
4t <1 on a ball with radius large enough. Since

g̃1 is integrable, we conclude that w1(x, t) → 0 as t → ∞.

In each case of (a)–(c), we have shown w1(x, t) → C1, that is, it has been
shown u1+u3 → C1 as t → ∞. In a similar way, it is easy to see that w2(x, t) →
C2 as t → ∞.

It remains to prove u3(x, t) → u3,∞ as t → ∞.
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Define a positive definite function V : Ω → R, Ω open in R,

V (u3(x, t)) = (u3 − u3,∞)2. (15)

Via direct computations, we have Vxx = 2[(∂x u3)
2 + (u3 − u3,∞)∂xx u3].

Letting w3 = u3,∞ − u3 (> 0),

V̇ = 2(u3 − u3,∞)(∂xx u3 + k1u1u2 − k2u3)

= ∂xx V − 2(∂x u3)
2 − 2w3(k1u1u2 − k2u3)

= ∂xx V − 2(∂x u3)
2 − 2w2

3[k1(C1 + C2 − u3 − u3,∞) + k2]
≤ ∂xx V − 2V [k1(C1 + C2 − 2u3,∞ + w3) + k2].

Here, the last step is followed from the previous proof of theorem 1. By weak
maximum principle, it follows that V (u(x, t)) goes to zero as t → ∞.

By applying Liapunov’s method, we conclude that u3(x, t) → u3,∞ as t →
∞. Furthermore, it follows that u1(x, t) → C1 − u3,∞ and u2(x, t) → C2 − u3,∞
as t → ∞, respectively. This completes the proof. ��

3. Example

We have shown that the concentration of chemical species has certain
amount of limit as time proceeds. In this section, we determine the equilibria in
an chemical solutions of weak acids and strong acids by applying previous theo-
rem.

Consider a reversible reaction

HC2H3O2 + H2O
k1�
k2

H3O+ + C2H3O−
2 .

Here, the ionization constant Ka = 1.74 × 10−5 (for convenience, k1 = 1.74 ×
10−5, k2 = 1). Refer to Petrucci [6].

We determine concentrations [H3O+], and [C2H3O−
2 ] in a solution that is

0.1 M both in HC2H3O2 and HCL.
Let’s define u1 = [H3O+], u2 = [C2H3O−

2 ], and u3 = [HC2H3O2]. Then
based on reaction equations, the rate for each chemical species can be found in
the model

du1

dt
= k1u3 − k2u1u2,

du2

dt
= k1u3 − k2u1u2,

du3

dt
= −k1u3 + k2u1u2.
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We expect u2 to be small because the strong acid HCL represses the ionization
of the weak acid HC2H3O2 through the common ion, H3O+. This yields two
conservation equations:

u1 = 0.1 + u2,

u3 = 0.1 − u2.

According to theorem 1.1, we can see u2(t) converges to u2,∞=1.74 ×
10−5 M as time increases. Indeed, one can check that the value u2,∞ is one of
roots of an equation

u2
2 + (0.1 + k1/k2)u2 − 0.1(k1/k2) = 0,

which is derived from du2
dt

= 0.

Further, we find that u1(t) converges to 0.1 + u2,∞ as t → ∞. Hence, it
follows that [C2H3O−

2 ] = 1.74 × 10−5 M and [H3O+] = 0.1 + 1.74 × 10−5 M.
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